SYNTHESIS OF 1,2,4-TRIAZINES, XII

NEW SYNTHESIS OF 1,2,4-TRIAZINES WITH A FUNCTIONAL GROUP IN THE 6-POSITION

Tadashi Ohsumi and Hans Neunhoeffer*) Institute of Organic Chemistry, Technische Hochschule, Petersenstrasse 22 D-6100 Darmstadt, Germany

(Received in Germany 8 October 1991)

Key words: 1,2,4-Triazines

ABSTRACT: 6-Acyl- (15, 17) and 6-ethoxycarbonyl-5-substituted 1,2,4-triazines (11) were prepared by refluxing acylhydrazones (10, 14) or N,N-dimethylaminomethylenehydrazones (16) with ammonium acetate in acetic acid. NMR-studies confirmed the high regio selectivity of this procedure.

Amidrazones (2) which can be easily prepared by the reaction of amidines (1) with hydrazine are versatile intermediates for the synthesis of heterocycles 1-3. Due to their facile preparation a great number of 1,2,4-triazines (3) have been prepared by the reaction of 2 with 1,2dioxo compounds 6-8. (Scheme 1).

During our studies on 1,2,4-triazines we had to prepare 1,2,4-triazine-6-carboxylates (4). Above mentioned reaction, however, required some improvement, because we obtained a mixture of the two isomers 4 and 5, as shown in Scheme 2^{9} .

The α -hydrazones (9) which can be easily prepared from ethyl 8oxocarboxylates (6), as shown in Scheme 3, attracted almost no attention as synthetic intermediates. But their multifunctionality can be regarded as a useful synthetic tool for the synthesis of heterocycles. This prompted us to check if these intermediates can be used for the synthesis of 1,2,4-triazines with an ethoxycarbonyl or acyl group in the 6position. Here we would like to report the results of our studies.

Ethyl 8-oxocarboxylates (6) were treated with p-toluenesulfonyl azide and triethylamine to give the α -diazo compounds (7), which were mixed with triphenylphosphine to form the phosphazines (8)¹⁰. The phosphazines (8) were hydrolyzed in aqueous ethanol to give the hydrazones (9), as described by Bestmann^{11,12}. The hydrazones (9) were acylated in the presence of pyridine and the obtained acylhydrazones (10) were heated with ammoniumacetate in acetic acid under reflux ¹³.

Results were summarized in Table 1.

Table 1:

Synthesis of acylhydrazones 10 and 1,2,4-triazine-6-carboxylates 11

 	R	<u>R'</u>	yield 10	yield 11
a	Me	Me	79%	91%
ь	Et	Me	68%	80%
С	i-Pr	Me	66%	86%
d	i-Pr	Ph	46%	85%
е	Ph	Me	85%	77%
t	Me	Ph	53 %	81%
g	Me	Et	52%	93%
h	Me	i-Pr	84%	91%
i	Me	t-Bu	85%	98%

652

As shown in Table 1, ethyl 1,2,4-triazine-6-carboxylates (11) can be prepared in fairly good yields. Bulky groups such as i-propyl and t-butyl groups can easily be introduced into the 3- and/or 5-position. The absence of their regio isomers was confirmed by 'H-NMR analysis. For example, the methyl groups at the 5 position of 4 and at the 6-position of 5 appear at $\delta = 2.89$ and 2.79 as singlets in their 'H-NMR spectra, respectively⁹. Since we observe only one singlet in the 'H-NMR specta of 11f this procedure proves to be a good method for the synthesis of 5substituted 1,2,4-triazine-6-carboxylates.

This method was then successfully applied to the synthesis of 6-acyl-1,2,4-triazines (15) via the 1,2,3-triketone 2-hydrazones (13).

1,2,3-Triketone-2-triphenylphosphazines (12) were prepared from acetylacetone and benzoylacetone according to the method described by Regitz¹⁰). He reports that the hydrolysis of the phosphazine 12a in 90% ethanol in the presence of catalytic amounts of 6N HCl yields the phosphazine-hydrate. The desired 2,3,4-pentanetrione 3-hydrazone (13a) could be prepared according to the procedure described by Bestmann¹²). Thus obtained hydrazones 13 were acylated in pyridine and then cyclized by reaction with ammonium acetate in acetic acid to give 3-substituted-5methyl-6-acyl-1,2,4-triazines (15) (Scheme 4). Results are summarized in Table 2.

<u>Table 2:</u>

Synthesis of acylhydrazones 14 and 1,2,4-triazines 15 and 17

	R	R'	yield 14	yield 15		R	R'	yield 17,
a	Me	Me	43%	86%	a	Me	Me	53%
ь	Me	Et	67%	99 %	b	Me	OEt	25%
С	Me	Ph	35%	76%	с	Et	OEt	31%
đ	Ph	Me	100%	92%	đ	i-Pr	OEt	25%
					8	Ph	OEt	26%

The desired products were obtained in good yields. Their regio isomers could not be detected by 'H-NMR analysis. The structure of **15d** was determined by reduction with sodium borohydride, which gave the 6-(1-hydroxybenzyl)-3,5-dimethyl-1,2,4-triazine (**18**) as the single product. It is noteworthy that the acyl group can easily be introduced in the 6-position of 1,2,4-triazines by this method.

Introduction of a hydrogen at the 3-position of 1,2,4-triazines may be achieved by using ethyl 2,3-dioxocarboxylate 2-formylhydrazones and 1,2,3-triketone 2-formylhydrazones as starting materials. However both compounds could not be prepared by refluxing the hydrazones 9 and 13 in ethyl formate. 9 and 13 were therefore treated with N,N-dimethylformamide dimethyl acetal to give the N,N-dimethylaminomethylenehydrazones (16), which were refluxed without isolation with ammonium acetate in acetic acid.

Results are summarized in Table 2.

The desired 1,2,4-triazines with a hydrogen at the 3-position could be prepared in moderate yields without their regio isomers. Thus the hydrazones 9 and 13 proved to be versatile intermediates for the selective synthesis of 6-acyl- and 6-ethoxycarbonyl-5-substituted 1,2,4triazines. Other utilization of these promising intermediates is under investigation.

Experimental

<u>General methods</u>: ¹H-NMR spectra were recorded with a Varian EM 360 spectrometer (60 MHz) in deuteriochloroform solutions, tetramethylsilane as internal standard. – Infrared spectra were recorded with a Perkin-Elmer infrared spectrometer 297. – Melting points were taken on a Reichert melting point apparatus and are uncorrected. – Column chromatography was performed with Macherey-Nagel silica gel 60 (70 – 230 mesh).

Ethyl 2, 3-dioxocarboxylate 2-hydrazones (9):

These compounds are prepared in the similar manner as described by Bestmann¹². The prepared hydrazones are listed below with their physical data.

Ethyl 2,3-dioxobutanoate 2-hydrazone (9, R=Me): Yield 84%; m.p. 85-90°C (Lit.¹² 85-93°C); ¹H-NMR (CDCl₃) δ 1.35 (3H, t, J=7Hz), 2.33, 2.53 (total 3H, each s), 4.30 (2H, q, J=7Hz), 8.70-9.40 (2H, brd).

Ethyl 2,3-dioxopentanoate 2-hydrazone (9, R=Et): Yield 62%; m.p. 45–50°C; ¹H–NMR (CDCl₃) δ 1.34 (6H, t, J=7Hz), 2.77, 2.95 (total 2H, each q, J=7Hz), 4.30 (2H, q, J=7Hz), 8.70–9.40 (2H, brd); IR (Nujol) 3330, 3170, 2930, 1720, 1660, 1300, 1260, 1180, 1160, 1120, 1070, 1020, 970, 930 cm⁻¹; Anal. Calcd. for C₇H₁₂N₂O₃: C 48.83; H 7.02; N 16.27%. Found: C 48.76; H 7.07; N 16.41%.

Ethyl 2,3-dioxo-4-methylpentanoate 2-hydrazone (9, R=i-Pr): Yield 100%; oil; ¹H-NMR (CDCl₃) δ 1.10 (6H, d, J=7Hz), 1.35 (3H, t, J=7Hz), 3.51 (1H, sept, J=7Hz), 4.29 (2H, q, J=7Hz), 8.70-9.30 (2H, brd); IR (Nujol) 3330, 3170, 2930, 1660, 1580, 1560, 1300, 1220, 1180, 1160, 1100, 1030, 950 cm⁻¹; Anal. Calcd. for C₈H₁₄N₂O₃: C 51.60; H 7.58; N 15.04%. Found: C 51.45; H 7.59; N 14.81%.

Ethyl 2,3-dioxo-3-phenylpropanoate 2-hydrazone (9, R=Ph): Yield 62%; m.p. 57-61°C (Lit.¹² 59-62°C); ¹H-NMR (CDCl₃) δ 1.27 (3H, t, J=7Hz), 4.28 (2H, q, J=7Hz), 7.20-7.60 (3H, m), 7.70-8.00 (2H, m), 8.70-9.50 (2H, brd).

2,3,4-Pentanetrione 3-hydrazone(13, R=Me):

2,3,4-Pentanetrione-3-triphenylphosphazine¹⁰ (8.00 g, 20.6 mmol) is suspended in 90% ethanol (50 ml). The resulting mixture is stirred for two days to give a clear solution. The solution is concentrated under reduced pressure and diluted with ether. After stirring with powdered anhydrous ZnCi₂ (14g) for 30 min, the ether solution is filtered. The filtrate is washed with sodium bicarbonate solution (200 ml) and dried over anhydrous MgSO₄. The solvent is evaporated under reduced pressure to give crude crystals, which are triturated with n-hexane-ether (10 ml, 10:1) to give white crystals. Yield 81%; m.p. 107-108°C; ¹H-NMR (CDCl₉) δ 2.33 (3H, s), 2.53 (3H, s), 9.20-10.10 (2H, brd); IR (Nujoi) 3350, 3160, 2920, 1660, 1560, 1360, 1320, 1300, 1230, 1160, 1020, 970, 930 cm⁻¹; Anal. Calcd. for C₉H₈N₂O₂: C 46.87; H 6.29; N 21.86%. Found: C 46.86; H 6.39; N 22.13%.

1-Phenyl-1,2,3-butanetrione 2-hydrazone (13, R=Ph): This compound is prepared according to the method described by Regitz¹⁰.

Ethyl 2,3-dioxobutanoate 2-acylhydrazones (10, R=Me):

General procedure: To a solution of the hydrazone 9 (R=Me, 1.90 mmol) and carboxylic acid anhydride (2.09 mmol) in tetrahydrofuran (5 ml) pyridine (0.17 g, 2.15 mmol) is added with stirring at room temperature. After stirring overnight, the resulting solution is diluted with ethyl acetate and washed with 0.1 N hydrochloric acid (20 ml) and water (30 ml). The organic phase is concentrated and chromatographed on silica gel (eluting with n-hexane-chloroform-tetrahydrofuran, 6:2:1) to give *ethyl* 2,3-dioxobutanoate 2-acylhydrazones (10, R=Me).

The compounds prepared are listed below with their physical data.

Ethyl 2,3-dioxobutanoate 2-acetylhydrazone (10a): m.p. 70-74°C; ¹H-NMR (CDCl₂) δ 1.38 (3H, t, J=7Hz), 2.41 (3H, s), 2.50 (3H, s), 4.38 (2H, q, J=7Hz), 11.20-11.50 (1H, brd); IR (Nujol) 3230, 3150, 2950, 1750, 1700, 1610, 1300, 1250, 1180, 1080, 1030 cm⁻¹; Anal. Calcd. for C₆H₁₂N₂O₄: C 48.00; H 6.04; N 13.99%. Found: C 47.79; H 5.89; N 14.04%.

Ethyl 2,3-dioxobutanoate 2-benzoylhydrazone (10f): m.p. $81-83^{\circ}$ C; ¹H-NMR (CDCl₉) δ 1.40 (3H, t, J=7Hz), 2.57 (3H, s), 4.42 (2H, q, J=7Hz), 7.20-7.70 (3H, m), 7.70-8.00 (2H, m), 11.20-11.50 (1H, brd); IR (Nujol) 3230, 2950, 1700, 1660, 1530, 1370, 1290, 1250, 1230, 1170, 1150, 1020, 930, 750 cm⁻¹; Anal. Calcd. for C₁₃H₁₄N₂O₄: C 59.54; H 5.38; N 10.68%. Found: C 59.38; H 5.21; N 10.81%.

Ethyl 2,3-dioxobutanoate 2-propionylhydrazone (10g): m.p. 67-68°C; ¹H-NMR (CDCl₃) δ 1.25 (3H, t, J=7Hz), 1.37 (3H, t, J=7Hz), 2.47 (3H, s), 2.75 (2H, q, J=7Hz), 4.38 (2H, q, J=7Hz), 11.00-11.50 (1H, brd); IR (Nujol) 3240, 3150, 2950, 1760, 1710, 1600, 1330, 1270, 1230, 1190 cm⁻¹; Anal. Calcd. for C₉H₁₄N₂O₄: C 50.46; H 6.59; N 13.08%. Found: C 50.26; H 6.69; N 13.56%.

Ethyl 2,3-dioxobutanoate 2-isobutyrylhydrazone (10h): m.p. 55-58°C; ¹H-NMR (CDCl₃) δ 1.25 (6H, d, J=7Hz), 1.37 (3H, t, J=7Hz), 2.47 (3H, s), 3.28 (1H, sept, J=7Hz), 4.37 (2H, q, J=7Hz), 11.00-12.00 (1H, brd); IR (Nujol) 3170, 2930 1740, 1700, 1590, 1520, 1360, 1300, 1240, 1140, 1050 cm⁻¹; Anal. Calcd. for C₁₀H₁₅N₂O₄: C 52.62; H 7.07; N 12.27%. Found: C 52.88; H 6.82; N 12.95%.

Ethyl 2, 3-dioxobutanoate 2-pivaloylhydrazone (10i): m.p. 88°C; ¹H-NMR (CDCl₃) δ 1.33 (9H, s), 1.37, (3H, t, J=7Hz), 2.50 (3H, s), 4.37 (2H, q, J=7Hz), 11.50-12.00 (1H, brd); IR (Nujol) 3230, 2950, 1700, 1660, 1530, 1370, 1290, 1250, 1230, 1170, 1150, 1020, 930 cm⁻¹; Anal. Calcd. for C₁₁H₁₈N₂O₄: C 54.53; H 7.49; N 11.56%. Found: C 54.53; H 7.36; N 11.59%.

Ethyl 2, 3-dioxocarboxylate 2-acetylhydrazones (10, R'=Me) and 2-benzoylhydrazones (10, R'=CeHe): General procedure: To a solution of the hydrazone 9 (1.90 mmol) in pyridine (3 ml) acetic anhydride (0.58g, 5.70 mmol) or benzoic anhydride (1.29 g, 5.70 mmol) is added with stirring at room temperature. After stirring overnight, the resulting solution is poured into cold 1N hydrochloric acid (60 ml) and extracted with ethyl acetate (2x50 ml). The extracts are washed with water (30 ml) and evaporated under reduced pressure. The residue is chromatographed on silica gel (eluting with n-hexane-chloroformtetrahydrofuran, 6:2:1) to give *ethyl* 2,3-dioxocarboxylate 2-acetylhydrazones (10, R'=Me) and 2-benzoylhydrazones (10, R'=CeHe).

The compounds prepared are listed below with their physical data.

Ethyl 2,3-dioxopentanoate 2-acetylhydrazone (10b): m.p. $90-97^{\circ}$ C; ¹H-NMR (CDCl₃) δ 1.15 (3H, t, J=7Hz), 1.37 (3H, t, J=7Hz), 2.38 (3H, s), 2.85 (2H, q, J=7Hz), 4.35 (2H, q, J=7Hz), 11.00-11.50 (1H, brd); IR (Nujol) 3170, 3100, 2900, 1740, 1680, 1590, 1320, 1290, 1190, 1160, 1020, 940 cm⁻¹; Anal. Calcd. for C₉H₁₄N₂O₄: C 50.46; H 6.59; N 13.08%. Found: C 50.44; H 6.73; N 13.30%.

Ethyl 2,3-dioxo-4-methylpentanoate 2-acetylhydrazone(10c): m.p. 78-80°C; ¹H-NMR (CDCls) δ 1.18 (6H, d, J=7Hz), 1.35 (3H, t, J=7Hz), 2.37 (3H, s), 3.78 (1H, sept, J=7Hz), 4.33 (2H, q, J=7Hz), 11.30-12.00 (1H, brd); IR (Nujol) 3170, 3090, 2900, 1730, 1680, 1590, 1320, 1280, 1260, 1200, 1150, 1010, 960 cm⁻¹; Anal. Calcd. for C₁₀H₁₈N₂O₄: C 52.62; H 7.07; N 12.27%. Found: C 52.60; H 7.12; N 12.28.

Ethyl 2,3-dioxo-4-methylpentanoate 2-benzoylhydrazone (10d): m.p. 53-54°C; ¹H-NMR (CDCl₃) δ 1.20 (6H, d, J=7Hz), 1.39 (3H, t, J=7Hz), 3.63 (1H, sept. J=7Hz), 4.40 (2H, q, J=7Hz), 7.30-7.80 (3H, m), 7.80-8.10 (2H, m) 12.50-13.00 (1H, brd); IR (Nujol) 3180, 2930, 1740, 1660, 1600, 1530, 1260, 1210, 1120, 1110, 1010, 960, 920 cm⁻¹; Anal. Calcd. for C₁₅H₁₅N₂O₄: C 62.06; H 6.25; N 9.65%. Found C 61.92; H 6.20; N 9.67%.

Ethyl 2.3-dioxo-3-phenylpropionate 2-acetylhydrazone (**10e**): ¹H-NMR (CDCl₃) δ 1.15, 1.26 (total 3H, each t, J=7Hz), 2.23, 2.37 (total 3H, each s), 4.23, 4.33 (total 2H, each q, J=7Hz), 7.20-8.00 (5H, m), 11.50-12.00 (1H, brd); IR (Nujol) 3250, 2920, 1720, 1700, 1660, 1320, 1260, 1210, 1150, 1030 cm⁻¹; Anal. Calcd. for C₁₃H₁₄N₂O₄: C 59.54; H 5.38; N 10.68%. Found: C 59.75; H 5.41; N 10.76%.

2,3,4-Triketone 3-acylhydrazones(14):

These compounds are synthesized in the similar manner as described for the preparation of *ethyl* 2,3-dioxocarboxylate 2-acetylhydrazones (10, R'=Me).

The compounds prepared are listed below with their physical data.

2,3,4-Pentanetrione 3-acetylhydrazone (14a): oil; ¹H-NMR (CDCl₉) δ 2.40 (3H, s), 2.45 (3H, s), 2.57 (3H, s), 12.50-13.30 (1H, brd); IR (Nujol) 3160, 2900, 1710, 1680, 1650, 1520, 1360, 1290, 1250, 1150 cm⁻¹; Anal. Calcd. for C₇H₁₀N₂O₃: C 49.43; H 5.93; N 16.47%; Found: C 48.93; H 5.93; N 16.49%.

2,3,4-Pentanetrione 3-propionylhydrazone (14b): m.p. $53-54^{\circ}$ C, ¹H-NMR (CDCi₃) δ 1.23 (3H, t, J-7Hz), 2.48 (3H, s), 2.58 (3H, s), 2.77 (2H, q, J-7Hz), 12.00-13.00 (1H, brd); IR (Nujol) 3220, 1730, 1710, 1680, 1540, 1310, 1230, 1160, 1090, 1060 cm⁻¹; Anal. Calcd. for CeH₁₂N₂O₃: C 52.17; H 6.57; N 15.21% Found: C 52.02; H 6.60; N 15.23%

2,3,4-Pentanetrione 3-benzolhydrazone (14c): m.p. 118-119°C; ¹H-NMR (CDCl₃) δ 2.56 (3H, s), 2.64 (3H, s), 7.30-7.70 (3H, m), 7.70-8.00 (2H, m) 14.00-15.00 (1H, brd); IR (Nujol) 3200, 2980, 1700, 1520, 1360, 1300, 1240, 1160 cm⁻¹; Anal. Calcd. for C₁₂H₁₂N₂O₃: C 62.06; H 5.21; N 12.06%. Found: C 62.06; H 5.07; N 12.21%.

 $\begin{aligned} &1-Phenyl-1,2,3-butanetrione\ 2-acetylhydrazone\ (14d):\ m.p.\ 92-95^\circ C;\ {}^1H-NMR\ (CDCl_3)\ \delta\ 2.24,\ 2.50 \\ &(total\ 3H,\ each\ s),\ 2.56\ (3H,\ s),\ 7.20-8.10\ (5H,\ m),\ 9.50-10.10\ (1H,\ brd);\ IR\ (Nujol)\ 3200,\ 3120,\ 2910,\ 1710,\ 1690,\ 1680,\ 1660,\ 1600,\ 1280,\ 1240,\ 1160\ cm^{-1};\ Anal.\ Calcd.\ for\ C_{12}H_{12}N_2O_3: C\ 62.06;\ H\ 5.21;\ 12.06\%.\ Found:\ C\ 62.06;\ H\ 5.15;\ N\ 12.19\%. \end{aligned}$

3,5-Disubstituted-6-acetyl(benzoyl or ethoxycarbonyl)-1,2,4-triazines(11 or 15):

General procedure: The acylhydrazones 10 or 14 (1.40 mmol) and ammonium acetate (216 mg, 2.80 mmol) are dissolved in acetic acid (10 ml). The resulting mixture is refluxed for 5 hr and neutralized with sodium bicarbonate solution. The resulting solution is extracted with ethyl acetate (2x40 ml). The extracts are washed with water (30 ml) and concentrated. The residue is chromatographed on silica gel (eluting with n-hexane-ethyl acetate, 1:1 for 15, n-hexane-chloroform-tetrahydrofuran, 6:2:1 for 11) to give 3,5-disubstituted-6-acetyl(benzoy/or ethoxycarbonyl)-1,2,4-triazines(11 or 15).

The compounds prepared are listed below with their physical data.

Ethyl 3,5-dimethyl-1,2,4-triazine-6-carboxylate (11a): oil; ¹H-NMR (CDCl₃) δ 1.47 (3H, t, J=8Hz), 2.80 (3H, s), 2.93 (3H, s), 4.51 (2H, q, J=8Hz); IR (neat) 2980, 1730, 1530, 1440, 1380, 1270, 1120, 1090, 1030, 850 cm⁻¹; Anal. Calcd. for C₆H₁₁N₃O₂: C 53.03; H 6.12; N 23.19%. Found: C 52.76; H 6.14; N 23.47%.

Ethyl 3-methyl-5-ethyl-1,2,4-triazine-6-carboxylate(**11b**): oil; ¹H-NMR (CDCb) δ 1.33 (3H, t, J=7Hz), 1.47 (3H, t, J=7Hz), 2.91 (3H, s), 3.07 (2H, q, J=7Hz), 4.52 (2H, q, J=7Hz); IR (neat) 2980, 1730, 1520, 1410, 1370, 1270, 1240, 1090, 1030 cm⁻¹; Anal. Calcd. for C₉H₁₃N₃O₂: C 55.37; H 6.71; N 21.52%. Found: C 55.49; H 6.60; 21.44%.

Ethyl 3-methyl-5-isopropyl-1,2,4-triazine-6-carboxylate (11c): oil, ¹H-NMR (CDCl₃) δ 1.32 (6H, d, J=7Hz), 1.45 (3H, t, J=7Hz), 2.92 (3H, s), 3.57 (1H, sept, J=7Hz), 4.53 (2H, q, J=7Hz); IR (neat) 2980, 1730, 1530, 1420, 1250, 1090 cm⁻¹; Anal. Calcd. for C₁₀H₁₆N₃O₂: C 57.40; H 7.23; N 20.08%. Found: C 57.17; H 7.31; N 19.89%.

Ethyl 3-phenyl-5-isopropyl-1,2,4-triazine-6-carboxylate (11d): m.p. 48-50°C; ¹H-NMR (CDCl₃) δ 1.42 (6H, d, J=7Hz), 1.48 (3H, t, J=7Hz), 3.71 (1H, sept, J=7Hz), 4.54 (2H, q, J=7Hz), 7.30-7.70 (3H, m), 8.40-8.80 (2H, m); IR (Nujol) 2960, 1720, 1510, 1450, 1390, 1380, 1300, 1260, 1220, 1190, 1160 cm⁻¹; Anal. Calcd. for C₁₅H₁₇N₃O₂: C 66.40; H 6.32; N 15.49%. Found: C 66.42; H 6.37; N 15.26%.

Ethyl 3-methyl-5-phenyl-1,2,4-triazine-6-carboxylate (11e): m.p. 76-77°C; ¹H-NMR (CDCls) δ 1.25 (3H, t, J=7Hz), 2.97 (3H, s), 4.37 (2H, q, J=7Hz), 7.20-7.80 (5H, m); IR (Nujol) 2960, 1740, 1500, 1460, 1440, 1370, 1350, 1280, 1260, 1240, 1160, 1140, 1070, 1050 cm⁻¹; Anal. Calcd. for C₁₃H₁₃N₃O₈: C 64.19; H 5.39; N 17.27%. Found: C 63.86; H 5.27; N 17.33%.

Ethyl 3-phenyl-5-methyl-1,2,4-triazine-6-carboxylate (11f): m.p. 68-70°C; ¹H-NMR (CDCl₃) δ 1.48 (3H, t, J=7Hz), 2.89 (3H, s), 4.53 (2H, q, J=7Hz), 7.30-7.60 (3H, m), 8.40-8.70 (2H, m); IR (Nujol) 2980, 1720, 1510, 1460, 1370, 1260 cm⁻¹; Anal. Calcd. for C₁₃H₁₃N₃O₂: C 64.19; H 5.39; N 17.27%. Found: C 64.10; H 5.19; N 17.47%.

Ethyl 3-ethyl-5-methyl-1,2,4-triazine-6-carboxylate(**11g**): oil; ¹H-NMR (CDCl₃) δ 1.44 (3H, t, J=7Hz), 1.48 (3H, t, J=7Hz), 2.83 (3H, s), 3.18, (2H, q, J=7Hz), 4.53 (2H, q, J=7Hz); IR (neat) 2980, 1720, 1520, 1420, 1380, 1260, 1110 cm⁻¹; Anal. Calcd. for C₃H₁₃N₃O₂: C 55.37; H 6.71; N 21.52%. Found: C 55.04; H 6.88; N 21.60%. *Ethyl 3-isopropyl-5-methyl-1,2,4-triazine-6-carboxylate* (11h): oil; ¹H-NMR (CDCls) δ 1.47 (6H, d, J=7Hz), 1.47 (3H, t, J=7Hz), 2.85 (3H, s), 3.47 (1H, sept, J=7Hz), 4.52 (2H, q, J= 7Hz); IR (neat) 2980, 1/20, 1520, 1380, 1260, 1110 cm⁻¹; Anal. Calcd. for C₁₀H₁₀N₃O₃: C 57.40; H 7.23; N 20.08%. Found: C 57.14; H 7.20; N 19.78%.

Ethyl 3-tert-butyl-5-methyl-1,2,4-triazine-6-carboxylate (11i): oil; ^{1}H -NMR (CDCl₃) δ 1.47 (3H, t, J=7Hz), 1.55 (9H, s), 2.82 (3H, s), 4.52 (2H, q, J=7Hz); IR (neat) 2980, 1720, 1510, 1380, 1270, 1250, 1220, 1170, 1110, 1060 cm⁻¹; Anal. Calcd. for C₁₁H₁₇N₃O₂: C 59.17; H 7.67; N 18.82%. Found: C 59.29; H 7.78; N 18.66%.

6-Acetyl-3,5-dimethyl-1,2,4-triazine (15a): oil; ¹H-NMR (CDCl₃) δ 2.80 (3H, s), 2.87 (3H, s) 2.91 (3H, s); IR (neat) 2930, 1700, 1520, 1420, 1360, 1230, 1100, 1070, 1030, 940 cm⁻¹; Anal. Calcd. for C₇H₉N₃O: C 55.62; H 6.00; N 27.80%. Found: C 55.44; H 6.23; N 27.42%.

$$\begin{split} & 6 - Acetyl - 3 - ethyl - 5 - methyl - 1, 2, 4 - triazine (15b): oil; ^{4}H - NMR (CDCl_3) \delta 1.42 (3H, t, H=7Hz), 2.82 (3H, s), 2.85 (3H, s), 3.12 (2H, q, J=7Hz); IR (neat) 2980, 1700, 1510, 1420, 1380, 1360, 1240, 1110, 1080, 950 cm^{-1}; Anal. Calcd. for CeH_{11}N_3O: C 58.17; H 6.71; N 24.44\%. Found: C 58.03; H 6.93; N 24.57\% \end{split}$$

 $\begin{aligned} & 6-Acetyl-5-methyl-3-phenyl-1,2,4-triazine (15c): m.p. 92-94^{\circ}C; \ ^{1}H-NMR \ (CDCis) \ \delta \ 2.93 \ (6H, s), \\ & 7.40-7.70 \ (3H, m), 8.50-8.70 \ (2H, m); IR \ (Nujol) \ 2960, 1690, 1510, 1460, 1440, 1380, 1360, 1240, \\ & 1100, 1030, 960 \ cm^{-1}; \ Anal. Calcd. for \ C_{12}H_{11}N_{3}O: C \ 67.59; H \ 5.20; N \ 19.71\%; \ Found: C \ 67.77; \\ & H \ 5.21; N \ 19.59\%. \end{aligned}$

6-Benzoyl-3,5-dimethyl-1,2,4-triazine(15d): oil; ¹H-NMR (CDCl₂) δ 2.67 (3H, s) 2.97 (3H, s), 7.50-7.70 (3H, m), 7.50-8.10 (2H, m); IR (neat) 3060, 2940, 1770, 1670, 1600, 1520, 1260, 900 cm⁻¹; Anal. Calcd. for C₁₂H₁₁N₃O: C 67.59; H 5.20; N 19.71%. Found: C 67.33; H 5.35; N 19.41%.

5-Substituted-6-acetyl(or ethoxycarbonyl)-1,2,4-triazines(17):

General procedure: To a solution of the hydrazone 9 or 13 (2.34 mmol) in tetrahydrofuran (5 ml) a solution of N,N-dimethylformamide dimethyl acetal (0.28 g, 2,34 mmol) in tetrahydrofuran (2 ml) is added with stirring at 0°C. After 3 hr, the resulting solution is concentrated and mixed with ammonium acetate (0.36 g, 4.7 mmol). The mixture is refluxed in acetic acid (10 ml) for 5 hr. The reaction mixture is neutralized with sodium bicarbonate solution and extracted with ethyl acetate (2x40 ml). The extracts are washed with water (30 ml) and concentrated. The residue is chromatographed on silica gel (eluting with n-hexane-ethyl acetate, 1:1) to give 5-substituted-6-acetyl- or 6-ethoxycarbonyl-1,2,4-triazines(17). The compounds prepared are listed below with their physical data.

Ethyl 5-methyl-1,2,4-triazine-6-carboxylate (17b): oil; ¹H-NMR (CDCl₂) 1.48 (3H, t, J=7Hz), 2.85 (3H, s), 4.55 (2H, q, J=7Hz), 9.60 (1H, s); IR (neat) 2980, 1720, 1510, 1420, 1370, 1330, 1270, 1250, 1230, 1140, 1100, 1030, 900, 860 cm⁻¹; Anal. Calcd. for C₇H₉N₃O₂: C 50.30; H 5.43; N 25.14 %. Found: C 50.38; H 5.53; N 25.10%

Ethyl 5-ethyl-1,2,4-triazine-6-carboxylate (17c): oil; ¹H-NMR (CDCI₃) δ 1.36 (3H, t, J=7Hz), 1.48 (3H, t, J=7Hz), 3.09 (2H, q, J=7Hz), 4.56 (2H, q, J=7Hz), 9.63 (1H, s); IR (neat) 2980, 1720, 1510, 1460, 1420, 1370, 1320, 1270, 1220, 1140, 1110, 1050, 890, 860 cm⁻¹; Anal. Calcd. for C₆H₁₁N₃O₂: C 53.03; H 6.12; N 23.19%. Found: C 53.33; H 6.26; N 23.36%.

Ethyl 5-isopropyl-1,2,4-triazine-6-carboxylate(17d); oil; ¹H-NMR (CDCls) δ 1.37 (6H, d, J=7Hz), 1.47 (3H, t, J=7Hz), 3.58 (1H, sept, J=7Hz), 4.55 (2H, q, J=7Hz), 9.67 (1H, s); IR (neat) 2980, 1730, 1530, 1510, 1450, 1370, 1330, 1220, 1160, 1100, 1020, 900, 860 cm⁻¹; Anai. Calcd. for C₉H₁₃N₂O₂: C 55.37; H 6.71; N 21.52; Found: C 55.32; H 7.01; N 21.07%.

Ethyl 5-phenyl-1,2,4-triazine-6-carboxylate (17e): oil; ¹H-NMR (CDCl₃) δ 1.25 (3H, t, J=7Hz), 4.42 (2H, q, J=7HZ), 7.30-8.00 (5H, m), 9.77 (1H, s); IR (neat) 3060, 2980, 2960, 1730, 1500, 1440, 1330, 1220, 1150, 1060, 1020 cm⁻¹; Anal. Calcd. for C₁₂H₁₁N₃O₂: C 62.87; H 4.84; N 18.33%. Found: C 62.36; H 4.90; N 18.60%.

6-(1-Hydroxybenzyl)-3, 5-dimethyl-1, 2, 4-triazine (18): To a stirred solution of 15d (100 mg, 0.47 mmol) in tetrahydrofuran (5ml) sodium borohydride (20 mg, 0.47 mmol) is added at 0°C. After stirring at room temperature for 30 min, the reaction mixture is poured into water (25 ml) and extracted with ethyl acetate (2x50 ml). The extracts are washed with water (10 ml) and evaporated. The residue is chromatographed on silica gel (eluting with n-hexane-ethyl acetate, 1:1) to give 60 mg (60%) 18 as oil; ¹H-NMR (CDCl₃) δ 2.32 (3H, s), 2.85 (3H, s), 4.60-5.30 (1H, brd), 6.00 (1H, s), 7.36 (5H, s); Anal. Calcd. for C₁₂H₁₃N₃O: C 66.96; H 6.09; N 19.52%. Found: C 66.74; H 5.94; N 19.23%.

References and Notes

- 1) Neilson, D. G. Chem. Reviews 1970, 70, 151.
- 2) Neunhoeffer, H.; Weischedel, F. Liebigs Ann. Chem. 1971, 749, 16.
- 3) Neunhoeffer, H.; Hansa, J.; Hammann, H. Liebigs Ann. Chem. 1985, 640.
- 4) Brugger, M.; Wamhoff, H.; Korte, F. Liebigs Ann. Chem. 1972, 755, 101.
- 5) Brugger, M.; Wamhoff, H. Korte, F. Liebigs Ann. Chem. 1972, 758, 173.
- Neunhoeffer, H.; Hennig, H. Chem. Ber. 1968, 101, 3952. Neunhoeffer, H.; Motitschke, L.; Hennig, H.; Ostheimer, K. Liebigs Ann. Chem. 1972, 760, 88. Neunhoeffer, H.; Hennig, H.; Frühauf, H. W.; Mutterer, M. Tetrahedron Letters 1969, 3147.
- Neunhoeffer, H. in "The Chemistry of Heterocyclic Compounds" (Ed. Weissberger, A.; Taylor, E.C.) Vol. 33, p. 194, Wiley– Intersciences New York 1978.
- Neunhoeffer, H. in "Comprehensive Heterocyclic Chemistry" (Ed. Katritzky, A.R.; Rees, C.W.) Vol. 3, Chapt. 2.19; p. 430, Pergamon Press, Oxford 1984.
- 9) Schüßler, W. Staatsexamen TH Darmstadt 1978.
- 10) Regitz, M. Chem. Ber. 1966, 99, 3128.
- 11) Bestmann, H. J.; Kolm, H. Chem. Ber. 1963, 96, 1948.
- 12) Bestmann, H. J.; Buckschewski, H.; Leube, H. Chem. Ber. 1959, 92, 1345.
- 13) Metze, R.; Meyer, S. Chem. Ber. 1957, 90, 481.